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Abstract

Nowadays, fuzzy concepts are frequently used as statistical parameters, while the traditional
normal distribution can only accept determinate variable. Article is studied about new notion of
general distribution, in order to design a practical application of fuzzy model are using general-
ized Rayleigh distribution, Rayleigh distribution and Log-Logistic distribution for clarifying the
effect of corticosterone, we discussed multiple states fuzzy mathematical models in the present
study. Furthermore, a comparative study is developed utilizing hypothesis testing between the
expected levels of respiratory modifications following corticosterone the injection for various
distribution models.
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1 Introduction

The normal distribution plays a crucial role in mathematical statistics and probability theory,
both in theory and in practice. It is commonly seen in many domains, including high technology,
manufacturing, and natural occurrences. Typically, an index with a normal distribution is influ-
enced by a large number of tiny random factors. For instance, a group characteristic like class size,
plant length, or rice stem diameter in a particular area; quality indicators for all product types like
tool size, capacitor capacitance, fiber tension, or plant length; or measured data events like highest
air temperature, average rainfall, or humidity.

One of the most significant and often used probability distributions in statistics is the normal
distribution, sometimes referred to as the Gaussian distribution. Its key characteristics include
mean, median, mode, symmetry, variance, and standard deviation. The normal distribution is
characterized by a bell-shaped curve that is symmetric around the mean. If you want to describe
continuous variables like heights, test scores,measurementmistakes, andmore that cluster around
a central value, you can use the normal distribution. We can do hypothesis testing, draw conclu-
sions, and compute probabilities with it. Statistical distributions are mathematical functions that
describe the likelihood or frequency of different outcomes in a dataset or random process. Com-
mon statistical distributions include the Poisson, Binomial, Chi-Square, Normal (Gaussian), and
Exponential distributions. Understanding the properties of these distributions is crucial for statis-
tical analysis, hypothesis testing, and data modeling. The parameters of these distributions, such
as their mean, variance, and shape, allow them to model a wide range of real-world phenomena
in fields like biology, economics, and more.

The underlying statistical model or distributions have a significant impact on the importance
of the techniques utilized in a statistical investigation. Determining generalizations about a pop-
ulation from data from a sample of that group is the goal of statistical interpretation. The process
of hypothesis testing evaluates the strength of the evidence obtained from the sample and of-
fers support for conclusions pertaining to the population. Stated differently, it provides a means
of determining the degree to which empirical findings from a study sample can be extrapolated
to the larger population from which the sample was selected. A technique of parametric test-
ing statistical predictions for fuzzy random variables was presented by Hesamian and Sham [8].
Fuzzy hypothesis testing was created by Yosefi et al. [17] by utilizing the likelihood ratio statistic.
An animal must experience stress in order for its biological response mechanisms to work to re-
store homeostasis [3]. The biological reaction to stress is undoubtedly inconsistent, and its effects
might vary greatly [4]. However, the fundamental definition of stress has always been based on
how physiology and behaviour change in response to unpleasant stimuli [14, 10]. Birds must deal
with extreme stressors like bad weather, a lack of food, predation, competition, and disruption in
order to thrive in any environment. It is widely acknowledged that fewer birds are being impacted
by the stress hormone corticosterone [13, 9].

Therefore, antiretroviral medication, surveillance, and diagnosis of hens are crucial [6, 11].
Fuzzy Distribution Set (FDS) is a new kind of fuzzy set introduced by Batyrshin [1]. It is defined
as fuzzy sets on a finite domain where the sum of the membership values must equal 1. Subjec-
tive probability distributions and subjective weight distributions can be modeled by such fuzzy
sets. New parametric negations of probability distributions based on the involutive negation of
PD were presented by Batyrshin et al. [2]. It was recently suggested that probability distributions
be thought of as fuzzy distribution sets, opening the door for many fuzzy set concepts and opera-
tions to be extended to probability distributions. A probabilistic approach is presented by Fakoor
and Alizadeh Kaklar [7] for determining the Weibull distribution parameters, which lessen the
impact of the percentage discretization error on the experimental fatigue life and R-S-N curves
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for three reliability levels. Artificial data are produced and the accuracy of the common Weibull
distribution model can be increased by treating every normal fatigue test result as an analogous
Weibull distribution. Castilloa and Fernández-Canteli [5] are discussed about the Weibull model
and compatible regression of Weibull model for the description of the three-dimensional fatigue
σM–N–R field as a basis for elative damage approach.

In order to bridge this gap, Li et al. [12] and colleagues proposed an estimation method of the
process performance index for the two-parameter exponential distribution with measurement er-
rors. They also derived the relationship between the unobservable actual value andmeasurement
value, which is regarded as the full error model, and studied the maximum likelihood estimation
method to obtain the unknown parameters. Shama et al. [15] introduced and examined a mod-
ified Weibull distribution that includes four parameters and may adequately depict a bathtub-
shaped hazard rate function. Because of its capacity to represent both rising and falling failure
rates, it is important in the domains of longevity and dependability. Shrahili et al. [16] tackle the
problem of estimating different entropy measures for an LL distribution using progressive type
II filtering. We provide equations for six distinct categories of entropy assessments. The greatest
likelihood approach is used to produce the estimators of the proposed entropy metrics. For the
entropy metrics talked about, approximate confidence intervals are generated.

In the current study, wewill cover the fuzzymathematicalmodels for theGeneralized Rayleigh
distribution (GRD), Rayleigh distribution (RD), and Log-Logistic distribution. TheGRD, RD, and
Log-Logistic distribution are used to explain the effect of corticosterone. Furthermore, a compar-
ison between the predicted levels of respiratory changes following corticosterone treatment for
various distribution models has been developed using hypothesis testing. The preliminaries used
in this article were presented in Section 2 of the document, which was organized as follows. GRD ,
RD, and Log-Logistic distributions (LLD)were used to introduce the various types of fuzzymath-
ematical models in Section 3. By determining the mean as well as the variance values, we were
able to determine the effect of corticosterone in Section 4 by applying the models previously dis-
cussed. In Section 5, we compare the mean and variance values of the different scenarios utilizing
testing of hypotheses. A brief conclusion is provided in Section 6.

Notation:

λ : Scale parameter of GGD
µ, ψ : Shape parameter of GGD
δ : Scale parameter of LLD
ψ : Shape parameter of GGD
β : Scale parameter of RD and GRD
χ : Shape parameter of RD and GRD

λ[xUγ ] : Alpha cut of scale value in GGD

ϕ[xUγ ], µ[x
U
γ ] : Alpha cut of shape value in GGD

η[xUγ ] : Alpha cut of scale value in LLD

ψ[xUγ ] : Alpha cut of shape value in LLD

β[xUγ ] : Alpha cut of scale value in RD and GRD
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χ[xUγ ] : Alpha cut of shape value in RD and GRD

E[xUγ ] : Mean value of X

V [xUγ ] : Variance value of X

E[xUγ ] : Fuzzy mean value of X

V [xUγ ] : Fuzzy variance value of X

2 Preliminaries

Definition 2.1. A measurable function XUγ : ΩUγ → EUγ that maps a collection of potential outcomes from
a sample space ΩUγ to a measurable space EUγ is what defines a random variable XU

γ . The sample space
ΩUγ must be a sample space of a probability triple

(
ΩUλ , F

U
γ , P

U
γ

)
in order to meet the technical axiomatic

definition.

Definition 2.2. The gamma function, denoted as (the Greek capital letter gamma), is an accepted extension
of the factorial function to complex numbers. For any complex values other than non-positive integers, a
gamma function is defined. For any positive integer n, Γ (δ) = (δ − 1)!.

The gamma function is defined by a convergent improper integral,

Γ (δ) =

∫ ∞

0

γδ−1e−γdγ, ℜ(δ) > 0.

2.1 Property:

Any real-valued random variable’s cumulative distribution function has one of the following
properties:

1. FUγ (γ) is non-decreasing.

2. FUγ (γ) is right-continuous.

3. 0 ≤ FUγ (γ) ≤ 1.

4. FUγ (X) = 0 and FUγ (Y ) = 1.

5. PUγ
(
aUγ < XU

γ ≤ bUγ
)
= FUγ

(
bUγ
)
− FUγ

(
aUγ
)
.

2.2 Absolutely continuous random variable

A Real Random variable XU
γ has an absolutely continuous probability distribution if there is

a function fUγ : ℜ → [0,∞] such that for each interval [a, b] ⊂ ℜ the probability of XU
γ belongs to

[a, b] is given by the integral of f fUγ over IUγ then PUγ
(
aUγ < XU

γ ≤ bUγ
)
=
∫ bUγ
aUγ

fUγ (γ) dγ.

This is how a probability density function is described, indicating that probability distributions
that are absolutely continuous are exactly those that have a probability density function. Particu-
larly, the likelihood ofXU

γ to take any single value aUγ is zero, because an integral with coinciding
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upper and lower limits is always equal to zero. If the interval
(
aUγ , b

U
γ

)
is replaced by any mea-

surable set AUγ , the according equality still holds PUγ
(
XU
γ ∈ AUγ

)
=
∫
AU

γ
fUγ (γ) dγ . An absolutely

continuous randomvariable is a randomvariablewhose probability distribution is absolutely con-
tinuous.

Theorem 2.1. Prove that Γ (δ + 1) = δ!.

Proof.

Γ (δ + 1) =

∫ ∞

0

γδe−γdγ,

Γ (δ + 1) =
[
−γδe−γ

]∞
0

+

∫ ∞

0

δγδ−1e−γdγ,

Γ (δ + 1) = lim t→ ∞
(
−γδe−γ

)
+
(
−0δe−0

)
+

∫ ∞

0

δγδ−1e−γdγ,

Γ (δ + 1) = δ

∫ ∞

0

δγ−1e−γdγ,

Γ (δ + 1) = δΓ (δ) ,

Γ (δ + 1) = δ (δ − 1)!,

Γ (δ + 1) = δ!.

2.3 Generalized Rayleigh distribution

A random variable XU
γ follows the GRD has probability density function of the form,

f(γ : χ, β) =
2

Γ (χ+ 1)βχ+1
χ2β+1e

γ2

χ , γ > 0,

where χ ≥ 0 is the shape parameter and β ≥ 0 is the scale parameter. The expected value and
variance of GRD,

E(XU
γ ) =

Γ

(
χ+

3

2

)
Γ (χ+ 1)

√
β, and V (XU

γ ) =

(χ+ 1)−

Γ

(
χ+

3

2

)
Γ (χ+ 1)


2
β.

2.4 Rayleigh distribution

Consider the two-dimensional vectorΥUγ =
(
UUγ , V

U
γ

)
which has components that are bivariate

normally distributed, centered at zero, and independent. ThenUUγ and V Uγ have density functions,

fUU
γ
(γ : β) = fV U

γ
(γ : β) =

e
− γ2

2β2√
2πβ2

.

Let, XU
γ be the length of Y Uγ . That is, XU

γ =
√(

UUγ
)2

+
(
V Uγ
)2.
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Then, XU
γ has cumulative distribution function,

FXU
γ
(γ : β) =

∫∫
Dγ

fUU
γ

(
uUγ : β

)
fV U

γ

(
vUγ : β

)
dA,

where Dγ is the disk,

Dγ =

{(
UUγ , V

U
γ

)
:

√(
UUγ
)2

+
(
V Uγ
)2 ≤ γ

}
.

It becomes,

FXU
γ
(γ : β) =

1

2πβ2

∫ 2π

0

∫ γ

0

γe
− γ2

β2 dγdθ,

FXU
γ
(γ : β) =

1

β2

∫ γ

0

γe
− γ2

2β2 dγ.

Finally, the probability function for is the derivative of its cumulative distribution function is

f(γ : β) =
d

dγ
FXU

γ
(γ : β) =

γ

β2
e

1
2 (

γ
β )

2

, where 0 ≤ γ ≤ ∞, β > 0.

This is the Rayleigh distribution.

The cumulative Rayleigh distribution function is F (γ : β) = 1− e
−γ2

2β2 , γ ∈ [0,∞).

The mean and variance of Rayleigh distribution E(XU
γ ) = β

√
π

2
and V (XU

γ ) = β2
(
2− π

2

)
.

2.5 Log–Logistic distribution

The parameter η > 0 is a scale parameter and is also median of the distribution. The parameter
ψ > 0 is a shape parameter. The distribution is unimodal when ψ > 1 and its dispersion decreases
as ψ increases.

The cumulative distribution function is

F (γ : η, ψ) =
1

1 +
(
γ
η

)−ψ ,

F (γ : η, ψ) =

(
γ
η

)ψ
1 +

(
γ
η

)ψ ,
F (γ : η, ψ) =

(γ)
ψ

(η)
ψ
+ (γ)

ψ
,

where γ > 0, η > 0, ψ > 0.
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The probability density function of Log-Logistic distribution is

f(γ : η, ψ) =

(
ψ
η

)(
γ
η

)ψ−1

(
1 +

(
γ
η

)ψ)2 , γ > 0, η > 0, ψ ≥ 1.

The expected value and variance value of Log-Logistic distribution,

E(XU
γ ) =

η
(
π
ψ

)
sin
(
π
ψ

) ,

V (XU
γ ) =

η2
[(

2π
ψ

)
sin 2

(
π
ψ

)
−
(
π
ψ

)2]
sin2

(
π
ψ

) .

2.6 Generalized gamma distribution

The probability density function of generalized gamma distribution is

f(γ : λ, µ, ϕ) =
λγλϕ−1e−(

γ
µ )

µλϕΓ(ϕ)

λ

, γ > 0.

The expected value and variance value of generalized gamma distribution,

E[XU
γ ] =

µΓ
(
ϕ+1
λ

)
Γϕ

,

V [XU
γ ] = µ2

Γ
(
ϕ+2
λ

)
Γϕ

−

Γ
(
ϕ+1
λ

)
Γϕ

2
 .

3 New Finding

3.1 Fuzzy expected value and fuzzy variance value of fuzzy Log-Logistic distribution model

A random variable χUδ as follows Fuzzy Log-logistic distribution (FLLD) with the fuzzy num-
bers δ, ψ is indicated by χUδ ∼ FLLD(γ, δ, ψ) .

The expected value for χU
δ ∼ FLLD

(
γ, δ,ψ

)
is

E(χUδ ) =
{
E
(
χUδ
)
[α] , µE(χU

δ )
/E
(
χUδ
)
[α] = EL

(
χUδ
)
[α] , EU

(
χUδ
)
[α] , µE(χU

δ )
(
χUδ
)
= α

}
,

EL
(
χUδ
)
[α] = inf

{
E
(
χUδ
)
[α] /δ ∈ δ(α), ψ ∈ ψ(α)

}
,

EU
(
χUδ
)
[α] = sup

{
E
(
χUδ
)
[α] /δ ∈ δ(α), ψ ∈ ψ(α)

}
,

EL
(
χUδ
)
=

(
δ( π
ψ
)

sin ( π
ψ
)

)
, δ ∈ δ(α), ψ ∈ ψ(α).
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The variance value for χU
δ ∼ FLLD(γ, δ,ψ) is

V(χUδ ) =
{
V
(
χUδ
)
[α] , µV(χU

δ )
/V
(
χUδ
)
[α] = VL

(
χUδ
)
[α] ,VU

(
χUδ
)
[α] , µV(χU

δ )
(
χUδ
)
= α

}
,(

χUδ
)
[α] = inf

{
V
(
χUδ
)
[α] /δ ∈ δ(α), ψ ∈ ψ(α)

}
,

VU
(
χUδ
)
[α] = sup

{
V
(
χUδ
)
[α] /δ ∈ δ(α), ψ ∈ ψ(α)

}
,

V(χUδ ) =

δ
2
[(

2π
ψ

)
sin 2

(
π
ψ

)
−
(
π
ψ

)2]
sin2

(
π
ψ

)
 , δ ∈ δ(α), ψ ∈ ψ(α).

3.2 Fuzzy expected value and fuzzy variance value of fuzzy Rayleigh distribution model

A random variable χUδ follows fuzzy Rayleigh distribution is denoted by χUδ ∼ FRD(γ, β) .

The mean of fuzzy Rayleigh distribution is given by,

E(χUδ ) =
{
E
(
χUδ
)
[α] , µE(χU

δ )
/E
(
χUδ
)
[α] = EL

(
χUδ
)
[α] , EU

(
χUδ
)
[α] , µE(χU

δ )
(
χUδ
)
= α

}
,

EL
(
χUδ
)
[α] = inf

{
E
(
χUδ
)
/β ∈ β(α)

}
,

EU
(
χUδ
)
[α] = sup

{
E
(
χUδ
)
/β ∈ β(α)

}
,

E
(
χUδ
)
= β

√
π

2
.

The variance of fuzzy Rayleigh distribution is given by,

V(χUδ ) =
{
V
(
χUδ
)
[α] , µV(χU

δ )
/V
(
χUδ
)
[α] = VL

(
χUδ
)
[α] ,VU

(
χUδ
)
[α] , µV(χU

δ )
(
χUδ
)
= α

}
,

VL
(
χUδ
)
[α] = inf

{
E
(
χUδ
)
/β ∈ β(α)

}
,

VU
(
χUδ
)
[α] = sup

{
E
(
χUδ
)
/β ∈ β(α)

}
,

V
(
χUδ
)
=
(
β
)2√π

2
.

3.3 Fuzzy expected value and fuzzy variance value of fuzzy generalized Rayleigh distribution

A random variable χUδ follows fuzzy generalized Rayleigh distribution is denoted by,
χUδ ∼ FGRD(γ, β, ρ), where β and ρ are fuzzy parameters.

The expected value for χU
δ ∼ FGRD(γ,β,ρ) is given by,

E(χUδ ) =
{
E
(
χUδ
)
[α] , µE(χU

δ )
/E
(
χUδ
)
[α] = EL

(
χUδ
)
[α] , EU

(
χUδ
)
[α] , µE(χU

δ )
(
χUδ
)
= α

}
,

EL
(
χUδ
)
[α] = inf

{
E
(
χUδ
)
/ρ ∈ ρ(α), β ∈ β(α)

}
,

EU
(
χUδ
)
[α] = sup

{
E
(
χUδ
)
/ρ ∈ ρ(α), β ∈ β(α)

}
,

E
(
χUδ
)
=

Γ

(
ρ+

3

2

)
Γ (ρ+ 1)

√
β, ρ ∈ ρ(α), β ∈ β(α).
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The variance value of χU
δ ∼ FGRD(γ,β,ρ) is given by,

V(χUδ ) =
{
E
(
χUδ
)
[α] , µV(χU

δ )
/E
(
χUδ
)
[α] = EL

(
χUδ
)
[α] , EU

(
χUδ
)
[α] , µV(χU

δ )
(
χUδ
)
= α

}
,

V
(
χUδ
)
[α] = inf

{
E
(
χUδ
)
/ρ ∈ ρ(α), β ∈ β(α)

}
,

VU
(
χUδ
)
[α] = sup

{
E
(
χUδ
)
/ρ ∈ ρ(α), β ∈ β(α)

}
,

V
(
χUδ
)
=

(ρ+ 1)−

Γ

(
ρ+

3

2

)
Γ (ρ+ 1)


2
β, ρ ∈ ρ(α), β ∈ β(α).

Consider a random variable χUδ follows fuzzy log logistic distribution with the fuzzy numbers δ,
ψ as parameters is indicated by χUδ ∼ FGRD

(
γ, β, ρ

)
.

3.4 Fuzzy expected value and fuzzy variance value of generalized gamma distribution model

The probability density function of fuzzy generalized gamma distribution is

f
(
γ : λ, µ, φ

)
=

(
λγλφ−1e−(

γ
µ )

µλφΓ(φ)

)
.

A random variable follows Fuzzy Gamma distribution (FGGD) with fuzzy parameter λ ,µ, φ is
symbolized by χUδ ∼ FGGD

(
λ, µ, φ

)
.

The expected value of χU
δ ∼ FGGD

(
γ, λ,µ,φ

)
is given by,

E(χUδ ) =
{
E
(
χUδ
)
[α] , µE(χU

δ )
/E
(
χUδ
)
[α] = EL

(
χUδ
)
[α] , EU

(
χUδ
)
[α] , µE(χU

δ )
(
χUδ
)
= α

}
,

EL
(
χUδ
)
[α] = inf

{
E
(
χUδ
)
/λ ∈ λ(α), µ ∈ µ(α), φ ∈ φ(α)

}
,

EU
(
χUδ
)
[α] = sup

{
E
(
χUδ
)
/λ ∈ λ(α), µ ∈ µ(α), φ ∈ φ(α)

}
,

E(χUδ ) =
µΓ(φ+ 1

λ
)

Γ(φ)
, λ ∈ λ(α), µ ∈ µ(α), φ ∈ φ(α).

The variance value of χU
δ ∼ FGGD

(
γ, λ,µ,φ

)
is given by,

V(χUδ ) =
{
V
(
χUδ
)
[α] , µV(χU

δ )
/V
(
χUδ
)
[α] = VL

(
χUδ
)
[α] ,VU

(
χUδ
)
[α] , µV(χU

δ )
(
χUδ
)
= α

}
,

VL
(
χUδ
)
[α] = inf

{
V
(
χUδ
)
/λ ∈ λ(α), µ ∈ µ(α), φ ∈ φ(α)

}
,

VU
(
χUδ
)
[α] = sup

{
V
(
χUδ
)
/λ ∈ λ(α), µ ∈ µ(α), φ ∈ φ(α)

}
,

V(χUδ ) = µ2

Γ
(
φ+ 2

λ

)
Γ (φ)

−
Γ
(
φ+ 1

λ

)2
Γ (φ)

 , λ ∈ λ(α), µ ∈ µ(α), φ ∈ φ(α)

4 Applications

Figures 1(a–b) and 2 display the pattern of corticosterone in plasma following a handlingmeet-
ing spanning one minute. The plasma corticosterone concentration reached its highest level and
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was significantly greater than before handling within 10 minutes of the first handling. At the 20,
30, and 40 minute sampling times, the corticosterone concentration was still significantly higher.
However, by the 60 minute samples time, it had fallen back to levels that were comparable to
those before handling [5]. Figures 1(a–b) and 2, the mean plasma concentration of corticosterone
in response to hen being handled for one hour. As the same results shown in the Table 1 and 2.

Figure 1: (a) Mean plasma concentration cortcosterone response to being handled for one hour. (b) Lower alpha cut for mean. (c) Upper
alpha cut for mean. (d) Lower alpha cut for variance.

Figure 2: Upper alpha cut for variance.

Based on this study the parameters value of GRD β, χ are 1.7402 and 1.1575 respectively, the
LLD parameters Value η, ψ are 2.9615 and 2.8297 respectively and the parameters value of RD β
is 2.6463.
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Table 1: Mean values for FGRD, FRD and FLLD.

A EL[X
U
γ (α)] EU [X

U
γ (α)]

FGRD FRD FLLD FGRD FRD FLLD
0.0 1.26491 21.5576 27.1831 1.34164 26.8625 39.3732
0.1 1.27043 21.7751 27.4731 1.33940 26.5427 38.2379
0.2 1.27593 21.9997 27.7595 1.33716 26.2328 37.1500
0.3 1.28144 22.2220 28.0600 1.33495 25.9211 36.1361
0.4 1.28690 22.4467 28.3650 1.33270 25.6134 35.1742
0.5 1.29232 22.6788 28.6767 1.33045 25.3151 34.2626
0.6 1.29773 22.9085 28.9846 1.32819 25.0151 33.3840
0.7 1.30311 23.1407 29.3079 1.32593 24.7189 32.5607
0.8 1.30851 23.3755 29.6364 1.32371 24.4265 31.7756
0.9 1.31385 23.6180 29.9629 1.32144 24.1431 31.0181
1.0 1.31917 23.8580 30.3040 1.31917 23.8580 30.3040

Table 2: Variance values for FGRD, FRD and FLLD.

α VL[X
U
γ (α)] VU [X

U
γ (α)]

FGRD FRD FLLD FGRD FRD FLLD
0.0 1.60000 2.9068 7.8586 2.16000 3.1347 7.16178
0.1 1.63950 2.9171 7.76397 2.14527 3.1222 7.14068
0.2 1.67928 2.9276 7.67112 2.13040 3.1099 7.12032
0.3 1.71977 2.9380 7.57849 2.11589 3.0974 7.09943
0.4 1.76044 2.9483 7.48901 2.10113 3.0850 7.08070
0.5 1.80171 2.9589 7.39831 2.08659 3.0728 7.06004
0.6 1.84325 2.9693 7.30924 2.07194 3.0604 7.04013
0.7 1.88540 2.9797 7.22037 2.05750 3.0480 7.01970
0.8 1.92794 2.9901 7.13450 2.04307 3.0356 7.00143
0.9 1.97098 3.0008 7.04597 2.02873 3.0236 6.97982
1.0 2.01428 3.0112 6.96179 2.01428 3.0112 6.96179

5 Testing of Hypothesis:

Testing of hypotheses is a procedure used to determine the degree of trial validity and provides
a strategy for population-related decision-making, i.e., it conveys amethod for acknowledging the
consistency with which one can extrapolate experimental results from the sample under examine
to the larger population that from which the population being studied was drawn. We start by
defining a hypothesis, which is a specific statement of the population’s parameters.

An example of such a hypothesis is H0. Here, we define H0 in the following manner:
H0 : µInf1 − µInf2 > 0. There is significant difference in µinf 1than µinf 2.
H1 : µInf1 − µInf2 ≤ 0.
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Test statistics for lower alpha values is defined by,

τInf =

 µInf1 − µInf2√
δ2Inf1

nInf1−1 +
δ2Inf2

nInf2−1

 ,
δ2Inf1 =

[∑(
µInf − µInf1

)
nInf − 1

]
,

and δ2Inf2 =

[∑(
µInf1 − µInf2

)
nInf2 − 1

]
.

Test statistics for upper alpha values is defined by,

τSup =

 µSup1 − µSup2√
δ2Sup1

nSup1−1 +
δ2Sup2

nSup2−1

 ,
δ2Sup1 =

[∑(
µSup − µSup1

)
nSup1 − 1

]
,

and δ2Sup2 =

[∑(
µSup − µSup2

)
nSup2 − 1

]
.

5.1 Lower fuzzy mean

Null hypothesis HGRR0 : The LFM in GRD and RD do not differ much from one another.

Alternative hypothesis HGRR1 : H1 ̸= H2.

Null hypothesis HRLL0 : The LFM among RD and LLD does not significantly differ.

Alternative hypothesis HRLL1 : H1 ̸= H3.

Null hypothesis HLLGR0 : The LFR from LLD and GRD is not significantly different from each
other.

Alternative hypothesis HLLGR1 : H2 ̸= H3.

The above all hypothesis results are shown in Table 3.
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Table 3: Calculation of sample means and standard deviations of lower mean.

α X1 X2 X3 S1*S1 S2*S2 S3*S3
0.0 1.264911 21.5576 27.183051 0.2208163 427.7740793 686.2278488
0.1 1.270433 21.7751 27.473111 0.2260365 436.8183600 701.5087787
0.2 1.275931 21.9997 27.759493 0.2312946 446.2571750 716.7610269
0.3 1.281444 22.2220 28.059990 0.2366278 455.6986784 732.9413730
0.4 1.286895 22.4467 28.365035 0.2419607 465.3425552 749.5513249
0.5 1.292323 22.6788 28.676713 0.2473302 475.4100552 766.7146681
0.6 1.297729 22.9085 28.984593 0.2527364 485.4795290 783.8596143
0.7 1.303112 23.1407 29.307900 0.2581778 495.7658496 802.0677126
0.8 1.308511 23.3755 29.636359 0.2636935 506.2770004 820.7800412
0.9 1.313849 23.6180 29.962946 0.2692043 517.2485976 839.5996514
1.0 1.319166 23.8580 30.304028 0.2747500 528.2228856 859.4822674

Calculated value of |tGRR| = 3.099255, |tRLL| = 0.538719181, |tLLGR| = 3.124980659.

At a 5% level of significance, the tabulated value of 11 + 11− 2 = 20 d.f. is 2.080.

Calculated tGRR bigger than Tabulated tGRR.

The null hypothesis HGRR0 is rejected.

11 + 11− 2 = 20 d. f. has a tabulated value of 2.080 at the 5% level of significance.

Calculated value of tRLL is Less than the value of tRLL in the table.

The null hypothesis HRLL0 is accepted.

At a 5% level of significance, the tabulated value of 11 + 11− 2 = 20 d.f. is 2.080.

Calculated value of tLLGR is higher than the value of tLLGR in the table.

We do accept the null theory HLLGR0.

5.2 Upper fuzzy mean

Null hypothesis HωLLU0 : The UFM in GRD and RD are not significantly different from one an-
other.

Alternative hypothesis HωLLU1 : I1 ̸= I2.

Null hypothesis HωεU0 : This UFM for RD and LLD are identical, and this is a significant distinc-
tion.

Alternative hypothesis HωεU1 : I1 ̸= I3.

Null hypothesis HLLεU0 : Its UFM in the LLD and GRD are identical, and this is a significant
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distinction.

Alternative hypothesis HLLεU1 : I2 ̸= I3.

The above all hypothesis results are shown in Table 4.

Table 4: Calculation of sample means and standard deviations of upper mean.

α Y1 Y2 Y3 S1*S1 S2*S2 S3*S3
0.0 1.341641 26.8625 39.373151 0.0604870 663.8403780 1421.293845
0.1 1.339403 26.5427 38.237943 0.0593912 647.4632921 1336.987744
0.2 1.337161 26.2328 37.150029 0.0583034 631.7883332 1258.612491
0.3 1.334953 25.9211 36.136114 0.0572420 616.2160817 1187.699334
0.4 1.332704 25.6134 35.174195 0.0561709 601.0342560 1122.323366
0.5 1.330451 25.3151 34.262621 0.0551080 586.4969933 1062.076879
0.6 1.328194 25.0151 33.383974 0.0540535 572.0563733 1005.579530
0.7 1.325934 24.7189 32.560702 0.0530077 557.9752623 954.0439573
0.8 1.323707 24.4265 31.775552 0.0519872 544.2469068 906.1576164
0.9 1.321439 24.1431 31.018128 0.0509581 531.1042885 861.1306683
1.0 1.319166 23.8580 30.304028 0.0499371 518.0449124 819.7300381

Calculated value of |tGRRU | = 3.442251, |tRLLU | = 0.778690192, |tLLGRU | = 3.501450021.

For the 11 + 11− 2 = 20 d.f., the tabulated value of tωLLU is 2.080 at the 5% level of significance.

Value of tGRRU higher than calculated value of tGRRU in the table.

Rejected is the null hypothesis HGRRU0.

At a 5% level of significance, the tabulated value of 11 + 11− 2 = 20 d.f. is 2.080.

Calculated value of tRLLU is bigger than the tabulated value of tRLLU .

We reject the null hypothesis HRLLU0.

11 + 11− 2 = 20 d.f. has a tabulated value of 2.080 at the 5% level of significance.

Calculated value of tLLGRU> tabulated value of tLLGRU .

We do not accept the null hypothesis HLLGRU0.

5.3 Lower fuzzy variance

Null hypothesis HGRRV 0 : The LFV in GRD and RD do not differ much from one another.

Alternative hypothesis HGRRV 1 : H1 ̸= H2.

Null hypothesis HRLLV 0 : The LFV among RD and LLD does not significantly differ.
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Alternative hypothesis HRLLV 1 : H1 ̸= H3.

Null hypothesis HLLGRV 0 : The LFV from LLD and GRD is not significantly different from each
other.

Alternative hypothesis HLLGRV 1 : H2 ̸= H3.

The above all hypothesis results are shown in Table 5.

Table 5: Calculation of sample means and standard deviations of lower variance.

α X1 X2 X3 S1*S1 S2*S2 S3*S3
0.0 1.600000 2.9068 7.858603 0.6480250 4.12861761 47.2175535
0.1 1.639501 2.9171 7.763972 0.7131819 4.17058084 45.9259941
0.2 1.679282 2.9276 7.671115 0.7819547 4.21357729 44.6760565
0.3 1.719773 2.9380 7.578492 0.8552051 4.25638161 43.4464485
0.4 1.760436 2.9483 7.489014 0.9320667 4.29898756 42.2748857
0.5 1.801705 2.9589 7.398306 1.0134550 4.34305600 41.1035624
0.6 1.843247 2.9693 7.309237 1.0988218 4.38651136 39.9694162
0.7 1.885400 2.9797 7.220369 1.1889722 4.43018304 38.8536424
0.8 1.927936 2.9901 7.134495 1.2835440 4.47407104 37.7904653
0.9 1.970976 3.0008 7.045971 1.3829196 4.51945081 36.7099178
1.0 2.014283 3.0112 6.961789 1.4866510 4.56377769 35.6969086

Calculated value of |tGRRV | = 1.57484, |tRLLV | = 2.081386209, |tLLGRV | = 2.723051839.

At a 5% level of significance, the tabulated value of 11 + 11− 2 = 20, d.f. is 2.080.

Calculated tGRRV less than valuetGRRV ’s tabulated.

The null hypothesis HGRRV 0 is acceptable.

11 + 11− 2 = 20, d.f. has a tabulated value of 2.080 at the 5% level of significance.

Calculated value of tRLLV is bigger than the value of tRLLV in the table.

The null hypothesis HRLLV 0 is rejected.

At a 5% level of significance, the tabulated value of 11 + 11− 2 = 20, d.f. is 2.080.

Calculated value of tLLGRV is higher than the value of tLLGRV in the table.

We do not accept the null theory HLLGRV 0.

5.4 Upper fuzzy variance

Null hypothesis HGRRV L0 : The UFV in GRD and RD are not significantly different from one an-
other.
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Alternative hypothesis HGRRV L1 : I1 ̸= I2.

Null hypothesis HRLLV L0 : This UFV for RD and LLD are identical, and this is a significant dis-
tinction.

Alternative hypothesis HRLLV L1 : I1 ̸= I3.

Null hypothesis HLLGRV L0 : Its UFV in the LLD and GRD are identical, and this is a significant
distinction.

Alternative hypothesis HLLGRV L1 : I2 ̸= I3.

The above all hypothesis results are shown in Table 6.

Table 6: Calculation of sample means and standard deviations of upper variance.

α Y1 Y2 Y3 S1*S1 S2*S2 S3*S3
0.0 2.159999 3.1347 7.161784 1.1327324 4.15059129 30.12565205
0.1 2.145265 3.1222 7.140681 1.1015867 4.09981504 29.89444199
0.2 2.130402 3.1099 7.120316 1.0706082 4.05015625 29.67216215
0.3 2.115888 3.0974 7.099433 1.0407836 4.00000000 29.44508983
0.4 2.101126 3.0850 7.080699 1.0108814 3.95055376 29.24212694
0.5 2.086594 3.0728 7.060039 0.9818709 3.90220516 29.01911179
0.6 2.071936 3.0604 7.040133 0.9530367 3.85336900 28.80504322
0.7 2.057503 3.0480 7.019698 0.9250650 3.80484036 28.58611017
0.8 2.043065 3.0356 7.001431 0.8975004 3.75661924 28.39111125
0.9 2.028734 3.0236 6.979818 0.8705524 3.71024644 28.16125593
1.0 2.014283 3.0112 6.961789 0.8437947 3.66263044 27.97023134

Calculated value of |tGRRV L| = 1.551309, |tRLLV L| = 2.417177098, |tLLGRV L| = 3.158069152.

For the 11 + 11− 2 = 20 d.f., the tabulated value of tωLLU is 2.080 at the 5% level of significance.

Value of tGRRV L less than calculated value of tGRRV L in the table.

Accepted is the null hypothesis HGRRV L0.

At a 5% level of significance, the tabulated value of 11 + 11− 2 = 20 d.f. is 2.080.

Calculated value of tRLLV L is bigger than the tabulated value of tRLLV L.

We reject the null hypothesis HRLLV L0.

11 + 11− 2 = 20 d.f. has a tabulated value of 2.080 at the 5% level of significance.

Calculated value of tLLGRV L > Tabulated value of tLLGRV L.

We do not accept the null hypothesis HLLGRV L0.

94



P. Senthilkumar et al. Malaysian J. Math. Sci. 10(1): 79–98(2025) 79 - 98

Table 7 and 8 discussed about null and alternative hypothesis of the upper fuzzy variance.

Table 7: Paired sample t−test for fuzzy mean model for the effect of corticosterone.

Test Calculated value Table value Hypothesis d. f Result
Lower
fuzzy
mean

Upper
fuzzy
mean

Lower
fuzzy
mean

Upper
fuzzy
mean

tGRR 3.099255 3.442251 2.086 Rejected Rejected 5% The fuzzymean in the GRD
and the Rayleigh distribu-
tion differ significantly
from one another.

tRLL 0.5387192 0.7786902 2.086 Accepted Accepted The fuzzy mean in the
Rayleigh distribution
and the Log-Logistic dis-
tribution do not differ
significantly.

tLLGR 3.124980 3.501450 2.086 Rejected Rejected The Log-Logistic distribu-
tion’s fuzzy mean and the
GRD differ significantly.

tGRR 3.099255 3.442251 2.845 Rejected Rejected 1% The fuzzy mean in the gen-
eralized Rayleigh l distribu-
tion and the Rayleigh dis-
tribution significantly differ
from one another.

tRLL 0.5387192 0.7786902 2.845 Accepted Accepted The fuzzymean in the GRD
and the Rayleigh distribu-
tion do not differ signifi-
cantly from one another.

tLLGR 3.124980 3.501450 2.845 Rejected Rejected The fuzzy mean in the
Log-Logistic distribution
and the distribution are
very different from one
another.
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Table 8: Paired sample t-test for fuzzy Variance Model for the effect of Corticosterone

Generalized
Rayleigh
test

Calculated value Table
value

Hypothesis d. f Result

Lower
fuzzy
variance

Upper
fuzzy
variance

Lower
fuzzy
variance

Upper
fuzzy
variance

tGRR 1.57484 1.551309 2.086 Accepted Accepted 5% The Fuzzy Reliability in
the GRD and the Rayleigh
distribution do not differ
significantly from one an-
other.

tRLL 2.081386 2.417177 2.086 Accepted Rejected The Fuzzy Reliability in
the Log-Logistic distri-
bution and the Rayleigh
distribution differ signifi-
cantly.

tLLGR 2.7230519 3.15807 2.086 Rejected Rejected The GRD’s fuzzy reliabil-
ity and the Log-Logistic
distribution differ signifi-
cantly.

tGRR 1.57484 1.551309 2.845 Accepted Accepted 1% The Fuzzy Reliability in
the GRD and the Rayleigh
distribution do not signif-
icantly differ from one an-
other.

tRLL 2.081386 2.417177 2.845 Accepted Accepted The Fuzzy Reliability in
the Log-Logistic distribu-
tion and the Rayleigh dis-
tribution do not differ sig-
nificantly from one an-
other.

tLLGR 2.7230519 3.15807 2.845 Accepted Rejected The Fuzzy Reliability in
the GRD and the Log-
Logistic distribution are
very different from one
another.

6 Conclusion

By estimating both the variance and the mean of FGRD, FRD and FLLD, we were able to suc-
cessfully create the fuzzy model to calculate the effect of Corticosterone. Upper alpha cuts result
in highermean values, and for lower alpha cuts result in lowermean values. The results of the test-
ing of the hypothesis reveal a substantial difference between FGRD, FRD, and FLLD. For assessing
the impact of Corticosterone, FRD and FLLD work effectively. In the current study, we covered
fuzzy mathematical models for the GRD, Rayleigh distribution, and Log-Logistic distribution. To
elucidate the impact of corticosterone, the GRD, Rayleigh distribution, and Log-Logistic distribu-
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tion are utilized. Moreover, a comparison utilizing hypothesis testing has been created to compare
the anticipated degrees of respiratory alterations subsequent to corticosterone administration for
different distribution models.
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